СОЗДАНИЕ ТЕЛЕСКОПИЧЕСКОЙ АНТЕННЫ ДЛЯ FPV- ДРОНА

Компания-заказчик: ООО «Акватория»

Название команды: МИК Телескоп

Куратор: Баранов Александр Михайлович, доктор

технических наук, профессор кафедры 1204

Teamlead: Баранова Екатерина Александровна, студент

МАИ 4 курс 9 институт

Капитан команды <u>Баранова Екатерина Александровна</u>:

- координация участников
- простановка целей и задач
- распределение ресурсов

Радиоинженер <u>Байбекова Елизавета Валерьевна</u>:

- расчет электрических параметров антенны
- определение диапазона частот
- расчет длин секций

Специалист по испытаниям Пинюгина Анастасия Сергеевна:

- проведение испытаний
- измерение параметров
- подготовка отчетов по результатам

Технолог

<u>Ляховский Георгий Васильевич</u>:

- проверка размеров деталей
- выбор материалов для деталей
- сборка контрольного образца
- контроль качества сборки

Конструктор-механик <u>Черняева Мария Юрьевна</u>:

- проектирование общей компоновки антенны
- моделирование в CAD-системах
- оптимизация веса конструкции

Инженер-метролог <u>Куликов Амвросий Дмитриевич</u>:

- корректность измерений
- достоверность результатов испытаний
- соответствие готового изделия заданным параметрам

Описание проекта

Создание телескопической антенны для FPV-дрона, длину которой можно менять перед взлетом, для того чтобы настраивать ее на необходимую нестандартную частоту, которая требуется для работы.

Параметр	Требуемая характеристика
Тип антенны	Диполь
Направленность	Всенаправленная
KCB	<1.5
КУ	≥1.2 Дби
Диапазон частот	От 136 МГц до 1050 МГц

Цели и задачи проекта

1. Цель проекта:

 Разработка и производство надежной телескопической антенны с изменяемой частотой

2. Задачи проекта:

- Обеспечение работы в заданном диапазоне частот
- о Достижение высокой надежности механизма
- о Обеспечение настройки частоты
- Минимизация веса конструкции
- о Защита от внешних воздействий

Этапы решения инженерной задачи

Этап І. Расчётно-аналитический

Определение размеров антенны

$$\lambda_{\max} = \frac{c}{f\min} = \frac{3*10^8}{136*10^6} = 2.206$$
 м – максимальная длина волны

$$l_{\max} = \frac{2.206}{4} = 0.55$$
м = 55см – максимальная длина усика антенны

$$\lambda_{\min} = \frac{c}{f_{\max}} = \frac{3*10^8}{1050*10^6} = 0.286 \text{ м} - \text{минимальная длина волны}$$

$$l_{
m mi} = rac{0.286}{4} = 0.0715$$
м $= 7$ см – минимальная длина усика антенны

Этап І. Расчётно-аналитический

Вычисление КСВ и КУ

 $z_{волн}$ = 75 Ом — волновое сопротивление подходящего к антенне коаксиального кабеля

 $z_{\rm BX} = 95\,{\rm OM}$ — рассчитанное значение входного сопротивления антенны согласно учебнику

$$\Gamma = rac{z_{
m BX} - z_{
m BOJH}}{z_{
m BX} + z_{
m BOJH}} = rac{95\
m дБ - 7\
m дБ}{95\
m дБ + 75
m дБ} = 0.12$$
 – коэффициент отражения волны

КСВ
$$=$$
 $\frac{1+\Gamma}{1-\Gamma} = \frac{1+0.12}{1-0.12} = 1.27 < 1.5$ – коэффициент стоячей волны => требуемое условие выполняется

$$KY = KHД*(1-\Gamma^2) = 3 дБ*(1-0.12^2) = 2.9 дБ > 1.2 дБи$$

Этап II. Конструкторский

Задачи:

- 1. Разработка механической конструкции
- 2. Проектирование системы настройки
- 3. Создание системы фиксации
- 4. Разработка защитных элементов

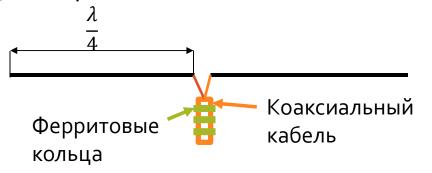


Рис 1. Принципиальная схема дипольной антенны



Рис 2. Габариты антенны

Рис 3. Крепления из стяжек. Антенну располагать перпендикулярно направлению полета в горизонтальной плоскости.

Рис 4. Корпус

Этап III. Оптимизация технического решения

Проблема:

На низкой частоте 136 МГц размер антенны должен быть увеличен до 1.1 м, что может быть слишком много для применения на квадрокоптере.

Решение проблемы: совместить в одной антенне полуволновую дипольную резонансную телескопическую антенну (для диапазона ~240МГц - 1050 МГц) с укороченной нерезонансной антенной (для диапазона 136МГц – ~240 МГц).

Оптимизация антенны:

Решено ограничить максимальную длину антенны до 58 см (29+29 см).

Результат оптимизации:

- В диапазоне ~240 МГц 1050 МГц − параметры антенны полностью соответствуют ТЗ.
- В диапазоне 136 МГЦ ~240 МГц выполняются условия всенаправленности и КУ, но не выполняется требование к КСВ. КСВ возрастает.

Простейшее решение. Для уменьшения КСВ необходимо заменить коаксиальный кабель с импедансом 50 или 75 Ом на двухпроводную линию с волновым сопротивлением ~300 Ом, что обеспечит согласование с увеличившимся импедансом антенны.

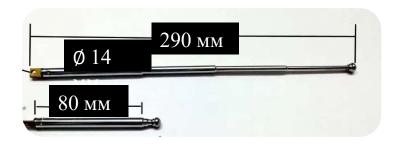


Рис 5. Габариты антенны

Этап IV. Технологический

Задачи:

- Подбор необходимого оборудования для сборки
- о Сборка антенны
- о Нанесение частотной линейки

Рис 6. Сборка антенны в корпус

Рис 7. Собранная антенна

Этап IV. Технологический

Рис 8. Изображение частотной линейки на антенне

Рис 9. Антенна развернута на частоте 350 МГц

Рис 10. Антенна развернута на частоте 600 МГц

Длина, мм	Частота, МГц	Обозна- чение
107	700	7
115	650	I
125	600	6
136	550	I
150	500	5
167	450	I
188	400	4
214	350	I
250	300	3
300	156-250	I

Таблица 1. Соответствие частот и длин антенны

Этап V. Испытательный

Задачи:

- Проверка работоспособности
- Проверкаэлектрическихпараметров
- Проверка удобства настройки
- Проверка надежности фиксации

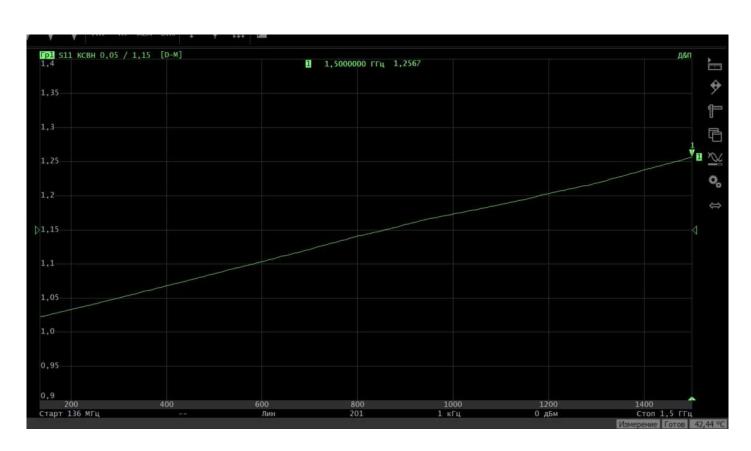


Рис 9. График зависимости КСВ от частоты

Выводы

Параметр	Требуемая характеристика	Характеристика антенны
Тип антенны	Диполь	Диполь
Направленность	Всенаправленная	Всенаправленная
KCB	<1.5	1.27
КУ	≥1.2 Дби	2.9
Диапазон частот	От 136 МГц до 1050 МГц	От 136 МГц до 1050 МГц

Полученные параметры соответствуют параметрам, заданным в ТЗ.

Перспективы дальнейшего развития

Конструктивные улучшения:

- о Облегчение конструкции ⇒ применение композитных материалов
- Защита от влаги ⇒ создание герметичных соединений

Электрические характеристики:

- Расширение диапазона частот ⇒ модификация секций
- Улучшение КСВ ⇒ оптимизация согласования

Эксплуатационные свойства:

о Удобство транспортировки ⇒ разработка защитного чехла

Документация:

- Разработка инструкции.
- Создание каталога запчастей.

Спасибо за внимание!

Контакты для сотрудничества:

Проект: https://pt.2035.university/project/mik-teleskop