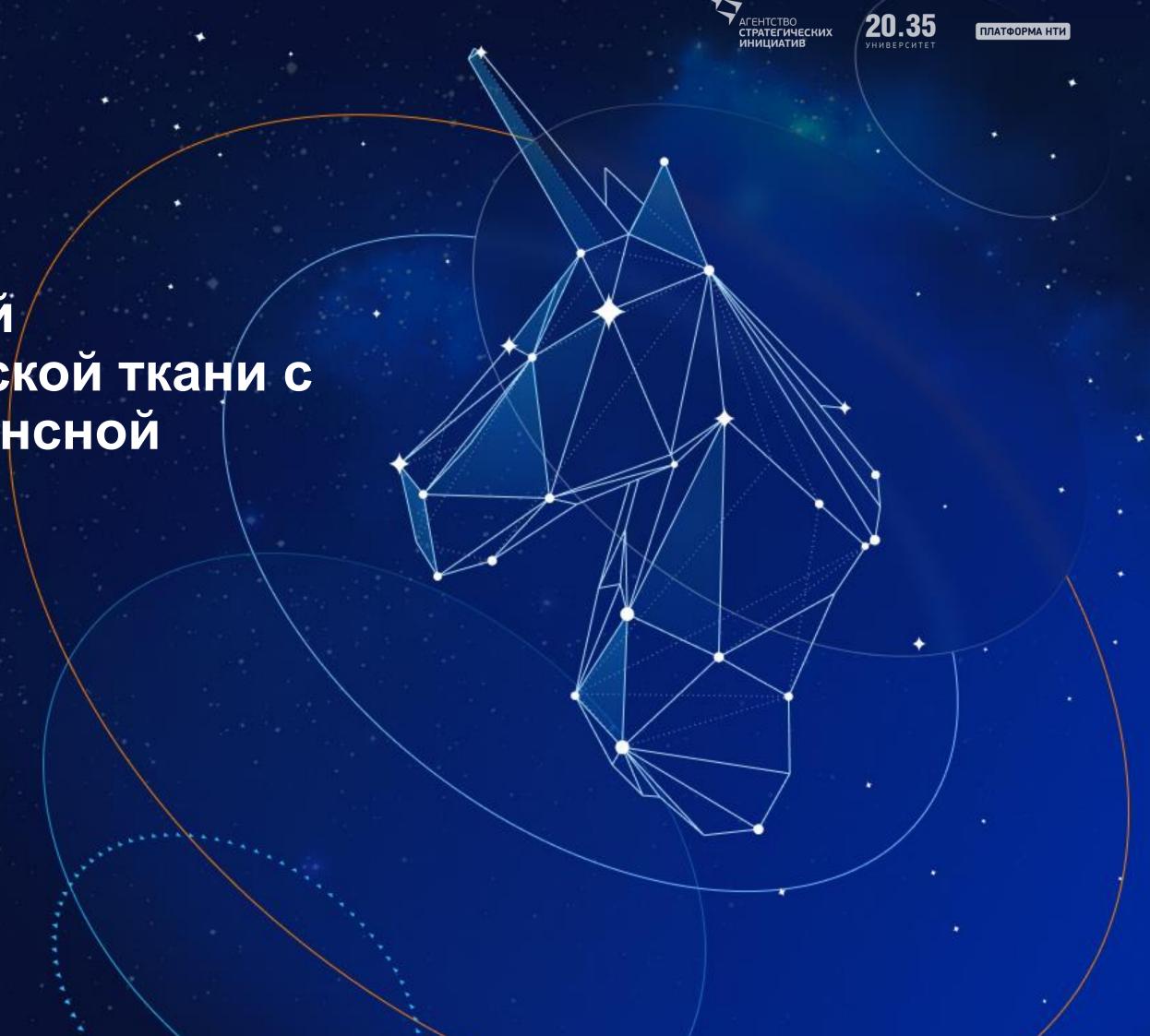


Система широкополосной визуализации биологической ткани с помощью электроимпедансной томографии

Направление: HealthNet, медицинская


визуализация

8 913 106 83 33

esk13@tpu.ru

x zheka16087

S vk.com/zheka16087

Введение

- **Медицинская визуализация** раздел медицинской диагностики, для неинвазивной визуализации биологических объектов, в т.ч. тела человека;
- Только в г. Москве, каждый год проводится более 1 млн. томографических исследований;
- Наиболее распространенные системы: магнитно-резонансной томографии (МРТ), компьютерной томографии (КТ), ультразвуковые системы (УЗ);
- В мире не существует компактных, портативных и дешевых томографических систем позволяющих проводить медицинскую визуализацию биообъектов, в том числе внутренних органов тела человека.

Основные недостатки КТ, МРТ, УЗ систем:

- Значительные массогабаритные характеристики;
- Стационарность, практически полное отсутствие мобильности;
- Высокая стоимость томографа и томографического исследования;
- Невозможность проведения длительной визуализации;
- Значительные требования к кабинету исследования, обслуживающему медицинскому персоналу;
- Низкая эффективность для некоторых сфер применения.

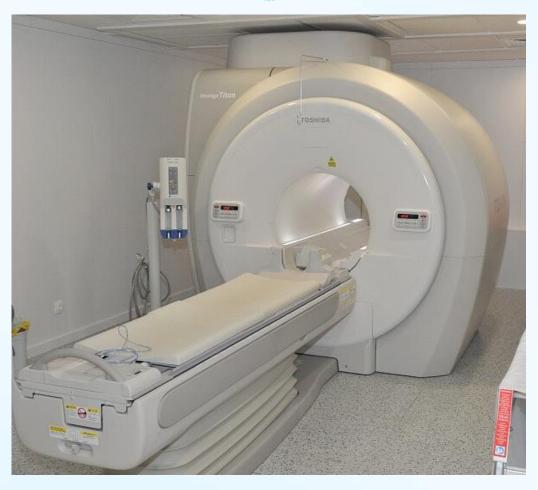


Рисунок сверху – МРТ сканер; снизу – КТ сканер. Обе системы имеют большую массу и габариты, полное отсутствие мобильности.

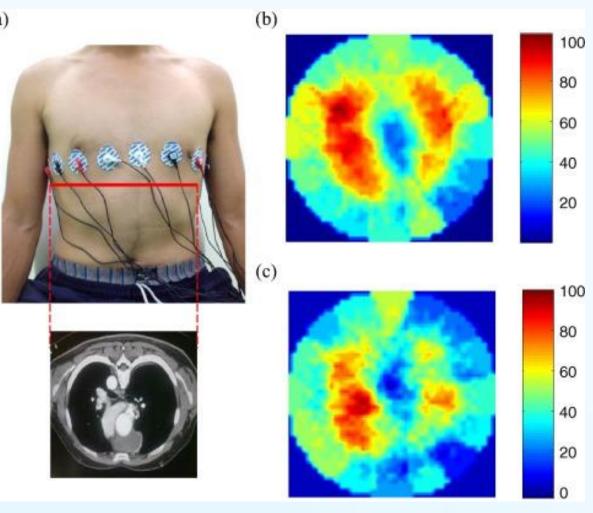
Сравнение медицинских систем визуализации и стратегических систем визуализации визуализации вистем визуализации визуализации визуализации вистем визуализации в

Для обхода ограничений современных систем визуализации, необходимо использовать альтернативный метод, способный обойти ограничения и недостатки текущих методов.

Vanatrantia	Методы медицинской визуализации				
Характеристика	MPT	KT	У3	ЭИТ	
Разрешающая способность	Очень высокая	Высокая	Средняя	Средняя (2-3 мм)	
Возможность длительной визуализации (до нескольких недель)	-	-	-	+	
Вредное излучение на организм	-	+	-	-	
Применение системы визуализации с медицинской аппаратурой сторонних производителей	-	-	+	+	
Высокие требования к кабинету исследования и персоналу	+	+	-	-	
Стоимость аппарата, млн. рублей	От 40	От 15	От 3	От 0.3	
Стоимость проведения процедуры, рублей	От 4000	От 3000	От 2000	От 500 (сопоставимая с ЭКГ)	
Доступность метода	В крупных специализированных медицинских центрах, крупных частных клиниках			Планируется обеспечить доступность на уровне ЭКГ аппаратов, во большинстве медицинских учреждениях	

В качестве альтернативного метода, предложен метод электрической импедансной томографии (ЭИТ), способный обходить ограничения современных методов визуализации

Предлагаемая технология


Метод Электрической импедансной томографии

Принцип работы:

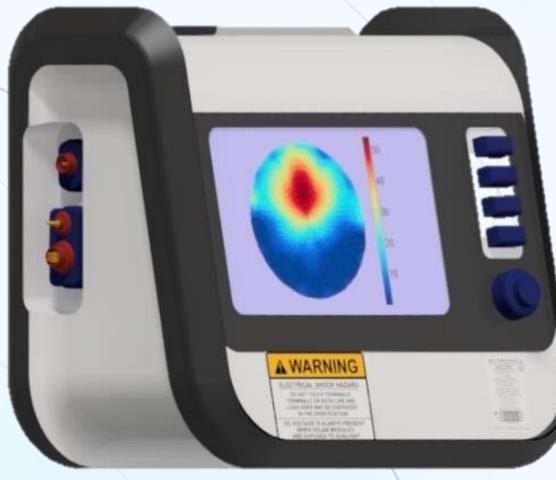
<u>Электрическая импедансная томография</u> – техника получения изображения с помощью (а) определения распределения импеданса. Через исследуемый объект пропускается слабый электрический ток безопасного уровня. Зная распределение тока строится томографическое изображение.

Преимущество метода:

- Визуализации без применения дорогостоящих систем: МРТ, КТ, УЗ-томография;
- Переход от качественной к количественной оценки исследуемого объекта, без использования МРТ, КТ, УЗ систем;
- Нет ограничения по длительности визуализации. Может проводиться от нескольких секунд до нескольких недель;
- возможность проведения визуализации на всех этапах проведения медицинской процедуры: до, во время и после (этап заживления), наблюдение за динамикой патологии;
- позволяет проводить визуализацию там, где малоэффективны другие методы визуализации: криомедицина, электрохирургия, маммография, визуализация легких, нейровизуализация и др;
- безопасен и безболезнен для пациента, не требуется специализированное помещение и специально обученный персонал. Возможность применения во всех медицинских учреждениях;
- Метод не является конкурентам МРТ, КТ, УЗ, может применяться в качестве скрининга. При нахождении патологий, направление пациента на МРТ, КТ, УЗ исследование;
- Стоимость томографа, обслуживания и томографического исследования на 1-2 порядка дешевле чем у МРТ, КТ, УЗ.

Процедура проведения электроимпедансной томографии. На пациента накладываются электроды (а) затем происходит построение томографического изображения (b), (c). Шкала справа — цветовая визуализация импеданса, электроимпедансное изображение.

Разрабатываемый продукт, концепт дизайн



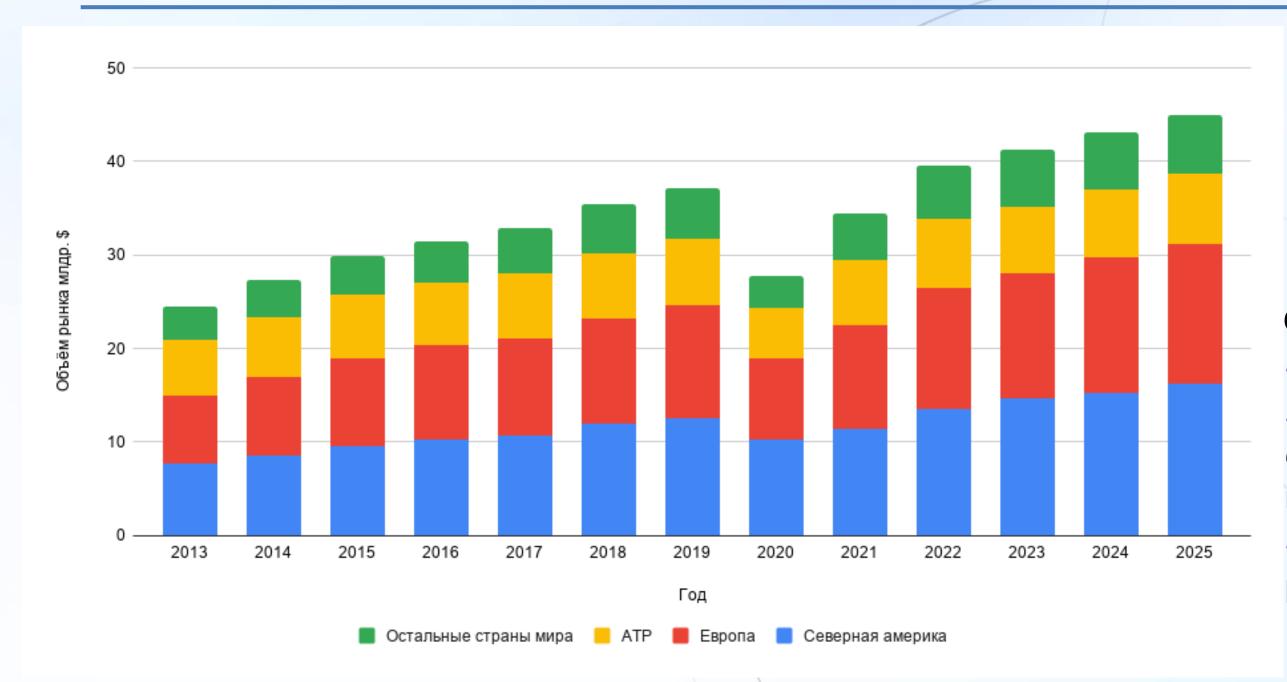
Внешний вид разработанного прототипа томографа. Рисунки слева – внутренние компоненты устройства (печатные платы). Посередине – внешний вид прототипа, где: 1, 2 – разъемы для подключения электродов; 3 – type-с разъем для подключения к компьютеру. Рисунок справа – электроды для подключения к исследуемому биообъекту, например пациенту.

Концепт дизайн разрабатываемого устройства. Размер устройства – 280x180x120 мм.

Характеристики прототипа:

- Визуализация биообъектов (в ручном режиме) с помощью метода электрической импедансной томографии;
- Широкополосный зондирующий сигнал (10 1000 кГц);
- Количество каналов 1, с возможностью расширения до 16;
- Компактность, малая масса и габариты. Размеры: не более 200*200*50 мм, без учета персонального компьютера, вес ~ 1 кг.

Основной недостаток:


более низкая разрешающая способность по сравнению с MPT, КТ, на уровне УЗ. Решение: использовать там, где не требуется высокая разрешающая способность, использование в качестве скрининга. В случае выявления патологий, более серьезное обследование с помощью MPT, КТ, УЗ.

Рынок медицинской визуализации

0.35 ₍

Рынок систем медицинской визуализации. Топ-производители в мире: General Electric Company (США), Hitachi Ltd. (Япония), Siemens AG. (Германия), Koninklijke Philips N.V. (Нидерланды) и др. В России: ЗАО «НИПК «ЭЛЕКТРОН», НПАО «АМИКО», ЗАО «МТЛ» и др.

Объем рынка в 2019 году		
411.2 млдр. \$		
37,2 млдр. \$		
450 — 550 млн \$		

Основные параметры рынка:

- Ежегодно наблюдается стабильный рост около 4-7%.
- 2020 год падение ~25%. причина: COVID-19.
 Ожидание восстановления: конец 2022 начало 2023 года;
- Рост, падение и восстановление отечественного рынка медицинской визуализации ~ сопоставим с мировым;

Основные потребители

ПЛАТФОРМА НТИ

Рын	ЮК	Потребитель	Предлагаемый продукт					
B2B		Частные клиники	Недорогая система для без либо мало инвазивной процедуры визуализации					
	Ветеринарные клиники	Система визуализации для животных						
		Производители медицинских аппаратов	Система визуализации встраивается внутрь аппарата					
B2G	ì	Государственные клиники	То же что и для частных клиник + визуализация доброкачественных и злокачественных образований, проведения операций на внутренних органах.					

Продвижение и сбыт разработанного продукта:

- Поиск стратегического партнера для продвижения системы визуализации и совместного производства.
- Возможный стратегический партнер проекта в РФ: Уральский оптико-механический завод (на этапе согласования);
- Прохождение сертификации;

Модель организации продаж:

• Дистрибьюторы, прямые продажи, госзаказ.

Планы по коммерциализации

Этапы коммерциализации и стратегия продвижения на рынок:

- 1. Простая и недорогая системы для ветеринарии. <u>Особенности</u>: не требуется сложная, дорогостоящая и длительная процедура регистрации медицинских изделий. Возможность апробации разработанной системы на животных;
- 2. Системы визуализации для частных клиник. Особенности: не потребуется процедура регистрации медицинских изделий, при сохранении воздействия на организм на допустимом уровне, разрешенный для приборов бытового назначения. Апробация в условиях частной клиники;
- 3. Системы визуализации для государственных клиник и крупных частных клиник. Особенности: завершающий этап внедрения системы визуализации. Регистрация системы как медицинское изделие, с последующими продажами в государственные клиники и крупные частные клиники;
- 4. Параллельно со стратегией продвижения на рынок разработанной системы, будет происходить поиск партнеров производителей медицинского оборудования и систем медицинской визуализации для разработки совместных продуктов;

Примерная стоимость устройства:

- от 100 тыс. рублей для ветеринарии
- от 300 тыс. рублей для частных клиник
- <u>от 1 млн. рублей</u> для операций на внутренних органах

План продаж:

Направление	Год				
	2022	2023	2024	2025	
Ветеринария	0	1	3	10	
Частные клиники	0	1	3	6	
Государственные клиники	0	0	1	2	
Сторонние производители оборудования	1	1	6	10	

Научно-технический задел проекта

.35

Команда проекта с 2016 года ведет исследования и разработки в области применения электрической импедансной томографии в различных медицинских направлениях.

Полученные результаты:

• Разработан способ для непрерывного широкополосного измерения биоиспеданса. «Ноу-хау» проекта.

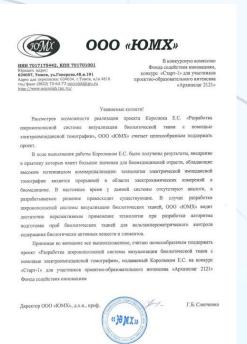
<u>Особенность</u>: аналогичные устройства измеряющие импеданс биообъектов используют фиксированную частоту зондирующего электрического сигнала. Конкурентным преимуществом разработанного способа является широкополосность зондирующего сигнала (от 10 кГц до 1 МГц). Т.е. полученное томографическое изображение можно посмотреть на любой частоте от 10 кГц до 1 МГц, что невозможно у конкурентных решений. <u>Преимущество способа</u>: повышение качества томографического изображения, уменьшение времени сканирования биообъекта.

- С 2016 года, разработано 3 поколения системы для получения биоимпедасных спектров биологической ткани в частотном диапазоне от 10 кГц до 1 МГц.
- Проведены исследования и изучены механизмы изменения биоимпедансного спектра биологической ткани растительного и животного происхождения.
- Разработана методика измерения импеданса для визуализации биологических объектов, определению границ патологической ткани.

Результаты интеллектуальной деятельности по проекту:

- 1. <u>Устройство управления процессом электроимпедансной томографии при замораживании биологических тканей: патент на полезную модель</u> 199056 Рос. Федерация. МПК А61В 5/053, G01N 27/02, A61В 18/02 / Е.С. Королюк, К.С. Бразовский; № 2020118747; заявл. 2020.06.07; опубл. 2020.08.11, Бюл. № 23.
- 2. Свидетельство о государственной регистрации программы для ЭВМ №2020616821, "Встроенное программное обеспечение для генератора зондирующих импульсов электрического импедансного томографа" дата 23.06.2020 г.
- 3. <u>17 научных публикаций по тематике проекта, 4 из них в БД Web of science, Scopus.</u>

Пройденные экспертизы и полученная поддержка

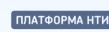


Партнеры проекта:

- <u>Томский политехнический университет.</u> Оказана помощь с оборудованием, лабораторией, проведением экспертиз;
- <u>Сибирский государственный медицинский университет</u>, г. Томск. Оказана помощь с оборудованием, экспертизой. Готовы оказать помощь с проведением до и клинических испытаний;
- <u>АО «Медтехника»,</u> г. Томск, продажа и обслуживание медицинского оборудования в Томской области. В случае, успешной реализации и поддержки проекта, готовы всестороннее оказывать помощь с осуществлением продаж и дальнейшем обслуживании систем электроимпедансной визуализации;
- OOO «ЮМХ», г. Томск, разработчики и производители электрохимического оборудования. Заинтересованы в окончании разработки, в случае успешной реализации и поддержки проекта готовы применять разработанную систему для проведения электрохимического анализа биообъектов, совместно со своими комплексами.
- <u>Уральский оптико-механический завод</u>, г. Екатеринбург. Проявлена предварительная заинтересованность в использовании разрабатываемого продукта в ИВЛ аппаратах собственной разработки, в качестве системы мониторинга качества проведения ИВЛ.

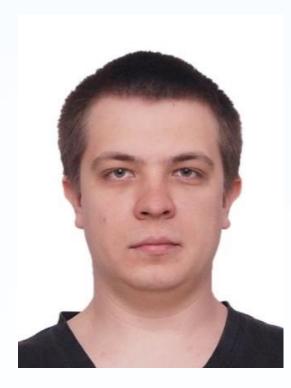
Пройденная и полученная поддержка:

- РФФИ грантовое финансирование, 1.2 млн. ₽;
- Акселерационные программы Фонда Сколково (startup tour 2019, startup village 2019 и др.), медицинские акселераторы проведение экспертизы проекта, консультирование;
- Российский союз научных и инженерных общественных объединений –премия «Инженер года 2020» в области разработки медицинской техники, за достигнутые результаты в области медицинской визуализации.
- Посольство Китая в России премия посла Китая в России, 2020 год, в области разработки медицинской техники.



Письма поддержки от партнеров проекта; премии, полученные при реализации проекта

Команда проекта


Королюк Евгений

- Руководитель проекта;
- Роль в проекте: руководство проектом, разработка ПО и электроники для системы визуализации.
- Участие в развитии технологии около 6 лет;
- Область интересов: разработка медицинской техники;
- Квалификация: преподавательисследователь (окончил аспирантуру).

Константин Бразовский

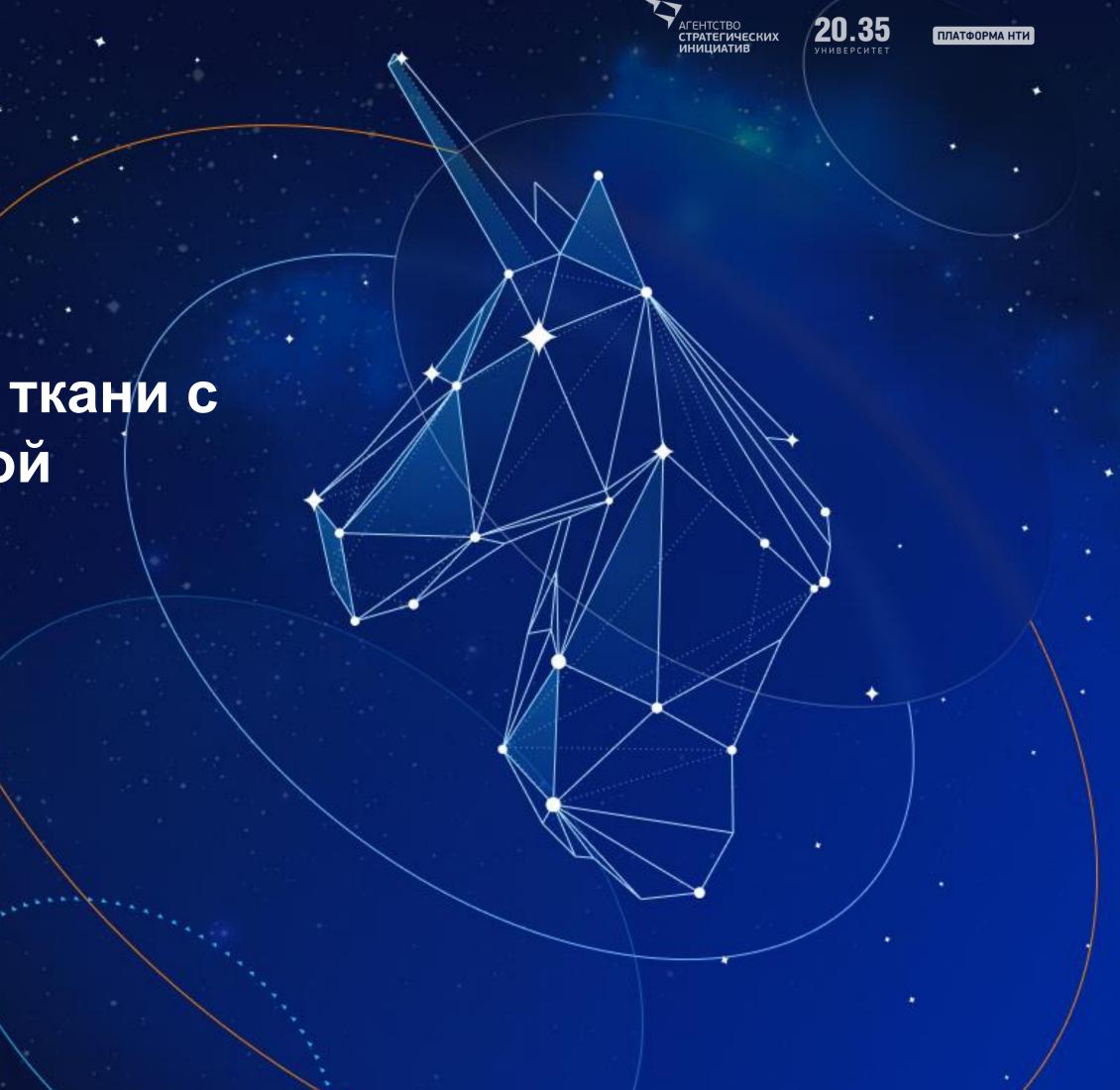
- Научный руководитель проекта;
- Роль в проекте: проведение научных консультаций, консультирование в вопросах разработки системы визуализации.
- 20 лет опыта работы и разработки систем электроимпедансной визуализации.
- Около 30 научных работ по тематике проекта;
- Квалификация: доктор технических наук, профессор ТПУ, ИШХБМТ;

Иван Васильев

- Профессиональный конструктор. Опыт около 5 лет.
- Роль в проекте: разработка компонентов системы визуализации.
- Квалификация: магистр, в настоящее время аспирант ТУСУРа
- Участвовал в разработке около 10 коммерческих проектов в т.ч. медицинских;

Виктория Руденко

- Профессиональный разработчик устройств медицинского и промышленного назначения. Контроль и тестирования медицинской аппаратуры.
- Роль в проекте: разработка электроники для системы визуализации. Проведение экспериментальных исследований
- Квалификация: магистр, абитуриент в аспирантуру ТПУ.
- Суммарный опыт работы 3 года;


В дальнейшем, планируется привлечение дополнительных членов в команду: разработчик ПО, Data scientist, специалисты по продвижению продукции медицинского назначения

Система широкополосной визуализации биологической ткани с помощью электроимпедансной томографии

Направление: HealthNet, медицинская визуализация

- 8 913 106 83 33
- esk13@tpu.ru
- **x** zheka16087
- S vk.com/zheka16087

