

Перспективный БПЛА с адаптивным крылом

РЭУ им. Г. В. Плеханова

Москва

Перспективный БПЛА с адаптивным крылом

Проект, нацеленный на достижение целей национального проекта «Беспилотные авиационные системы», в частности на разработку, стандартизацию и серийное производство авиационных систем, а также на развитие инфраструктуры

Перспективное производство

Полный цикл производства БПЛА, комплектующих для них, образовательных стендов и т. д. под требования заказчика

Инновационные технологии

100% деталей БПЛА производятся с применением аддитивных технологий, в т. ч. Композитных 3D-принтеров

Высокий уровень автоматизации

Печать двухматричных композитов помогает оптимизировать издержки и снизить влияние человеческого фактора

Отечественные компоненты

Сборочная конструкция БПЛА выполняется полностью из материалов российского производства

Рынок БПЛА растет

Российский рынок БПЛА быстро растет, создавая высокую потребность в новых технологических решениях, кадрах и развитии инфраструктуры

318% 22-23 гг.

CAGR¹ выручки от продажи БАС спецназначения

55% 22-23 гг.

CAGR выручки от продажи БАС на гражданский рынок

14% 22-23 гг. САGR выручки от реализации услуг БАС

Вызовы для производителей:

- Увеличение веса перевозимой полезной нагрузки, времени и дальности полетов БПЛА
- разработках в области композиционных материалов
- Увеличение эффективности производства за счет применения аддитивных технологий
- Расширение линейки БПЛА для удовлетворения потребностей бизнеса в разных отраслях

Сегментация рынка БАС

Разработанный БПЛА отвечает на запросы основных сегментов рынка БАС в соответствии с официальной стратегией развития беспилотной авиации в РФ

Распределение разрабатываемых в РФ БАС по предполагаемым сферам применения

СПДМ (54%)				ЛОГ (21%)			Прочие (10%)	BHP (9%)	PCB (6%)	
СПДМ	Сбор и передача данных, мониторинг	79	лог	Аэрологистика	31		ви	Визуальные инсталляции		1
АРЗ	Авиационная разведка и охрана территории и объектов	3	РСВ	Работы по обеспечению свя	9	E	ЗНР	Внешние раб (тушение по строительст	каров,	13
ВВ	Внесение веществ	5	ОБРС	Образовательная и спортивная деятельность	3	T	AKC	Перевозка л (перспектив направление	ное	2
Наиболее актуальные для НЕВА 2 сегменты										

XX – Кол-во моделей БПЛА, подходящих для работы в сфере применения

Закупки в области БАС

Наибольшую долю в объеме закупок БАС занимают безопасность и экстренная помощь, научная деятельность, а также логистика и транспорт

200-250

субъектов¹ предпринимательской деятельности функционируют в БАС в РФ

Доли закупок БАС по сферам применения в 2018-2023 гг., %

Доли закупок БАС по НМЦ² в 2018-2023 гг., шт.

Сегменты закупок с наиболее высокими НМЦ:

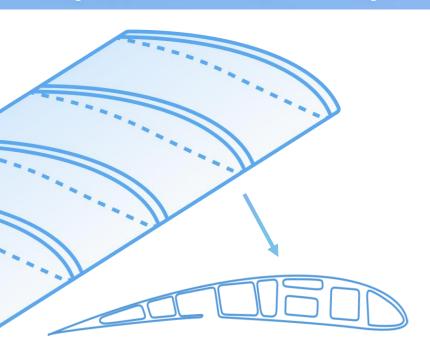
- Научная деятельность
- Энергетический сектор
- Безопасность, экстренная помощь

Актуальные БПЛА на рынке

Самыми эффективным характеристиками обладает модель Альбатрос М5 Самая выгодная по цене модель – Supercam S350

- Лучший показатель среди сравниваемых моделей

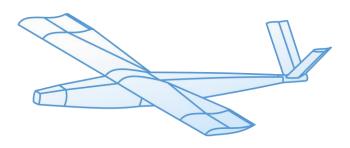
Модель	Стоимость, тыс руб	Размах крыла, м	Макс. взлетная масса, кг	Макс. вес полезной нагрузки, кг	Время полета, ч	Угол атаки	Скорость, км/ч
Геоскан 201	2 575 ¹	2,22	8,5	1,5	До 3	15°	64-130
Supercam S350	1 300 ²	3,2	15,5	2,5	До 4,5	15°	65-120
Альбатрос М5	6 000	3,3	15	5	До 4,5	18°	72-120


1 – в т. ч. фотограмметрическая камера 45 Мпикс (800 тыс. руб.), НСУ, пусковая установка, зарядное устройство, ЗИП, кейс, аккумулятор 2 – в стоимость не входит камера, но входит НСУ, ЗИП, кейс, катапульта, зарядное устройство, аккумулятор

6

«Мягкое» крыло из композитов

Бесшовная обшивка крыла избавляет от щелей в конструкции, что улучшает аэродинамические характеристики и увеличивает дальность полета


Нервюры в конструкции крыла изготовлены из двухматричных композитов, выполненных с помощью аддитивных технологий

Одной из ключевых задач авиастроения является снижение массы летательных аппаратов (ЛА) и улучшение их лётно-технических характеристик

Эффективный полет в атмосфере требует от аппарата различной аэродинамики в зависимости от скорости полета, режима полета. Классический подход к проектированию новых ЛА теперь позволяет лишь незначительно (не более 1-2%) улучшить аэродинамическое качество и улучшить взлетно-посадочные характеристики

В качестве альтернативы крылу с традиционной механизацией может выступать цельное адаптивное крыло с изменяемой в зависимости от режима полета формой профиля

Модель БПЛА в режиме кабрирования для анализа A/Д¹ характеристик

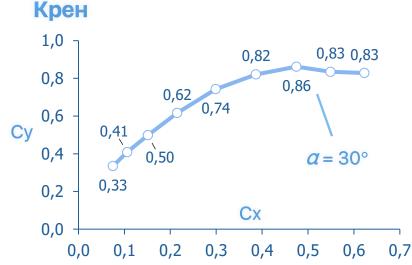
Использование адаптивного крыла позволит избавиться от щелей, увеличивающих лобовое сопротивление крыла, которое в свою очередь снижает аэродинамическое качество БПЛА

За счет применения упругих, но при этом прочных композиционных материалов становится возможным реализовать концепцию адаптивного крыла

1 – аэродинамические

Эффективность доказана

Аэродинамические характеристики БПЛА с адаптивным крылом


Был произведен расчетнотеоретический анализ аэродинамических характеристик в программном комплексе Ansys R1 в модуле Fluent БПЛА HEBA-1 с адаптивным крылом

Анализ проводился на высоте полёта 1000 метров со скоростью полёта 130 км/ч в четырех режимах полёта — крейсерский, крен, пикирование, кабрирование

В ходе анализа были получены зависимости Су от Сх; критический угол атаки в режиме кабрирования достиг 50°. У «жёсткого» крыла максимальный угол атаки равен 25°

НЕВА-1 (тестовая модель)

Технология адаптивного крыла отлично показала себя на тестовой модели БПЛА, придав ему высокую маневренность и хорошую управляемость

Данный БПЛА был построен для испытания технологии адаптивного крыла

Рис. 1. Опытный БПЛА для испытания работы крыла

Рис. 2. Печать нервюры на композитном 3D-принтере

Силовая конструкция крыла выполнена из лонжерона в виде композитной углеродной трубки квадратного сечения и нервюр, напечатанных из эластичного композита, армированного углеродным волокном

Силовой набор фюзеляжа изготовлен из шпангоутов, лонжеронов и стрингеров при помощи аддитивных технологий

Рис. 3. Лётные испытания НЕВА-1

Источник: внутренняя информация компании

НЕВА-2 (прототип)

Аддитивная печать и налаженная сборка в новом МИП позволят модели НЕВА-2 получить конкурентное преимущество на рынке

	HEBA-2
Себестоимость, тыс. руб	405 ¹
Вес пустого БПЛА, кг	4,4
Макс. взлетная масса, кг	10
Макс. вес полезной нагрузки, кг	3 ²
Размах крыла, м	1,8
Время полета, ч	До 5,5 ³
Угол атаки	50°
Кр. скорость, км/ч	90
Макс. скорость, км/ч	125

В отличие от НЕВА-1 силовой набор крыла и фюзеляжа данного БПЛА будут полностью изготавливаться с помощью аддитивных технологий

Силовые лонжероны будут представлять несимметричную ферменную конструкцию, выполненную из эластичного композита, армированного углеродным волокном, что в купе с обшивкой из термопласта позволит значительно снизить вес конструкции, сохранив при этом необходимые прочностные характеристики

Благодаря использованию лёгкой плёнки из силикатов адаптивное крыло не будет иметь складок и щелей, что значительно повысит лётно-технические характеристики (ЛТХ) летательного аппарата

Также для НЕВы разрабатываются катапульта и специальное программное обеспечение, благодаря которому полётный контролер, анализируя входящие параметры с телеметрических датчиков, будет подбирать оптимальную форму профиля крыла, тем самым повышая ЛТХ БПЛА

Время полёта БПЛА составляет 5,5 часов. Данный показатель достигается при полезной нагрузке 1 кг. Если потребуется перевезти крупногабаритный груз весом до 3 кг, то время полёта составит 2,5 часа

^{1 –} В стоимость не входит катапульта, камеры, дополнительное оборудование 2 – Увеличение веса полезной нагрузки снижает время полета

Сравнение с конкурентами

Модель беспилотника HEBA 2 выигрывает у конкурентов по большинству летно-технических показателей

Модель	Стоимость, тыс руб	Макс. взлетная масса, кг	Макс. вес полезной нагрузки, кг	Время полета, ч	Угол атаки	Скорость, км/ч	
Лучший показатель среди конкурентов	1 300 ¹	15	5	До 4,5	18°	64-130	
HEBA 2	600 ²	10	3	До 5,5	50°	90-125	

- 700 + 1 4ac + 32°

Таким образом, за счет внедрения новой технологии и улучшенной конструкции, HEBA 2 показывает высокую дальность полета и длительное время работы при минимальной стоимости сборки

- 1 В стоимость не входит камера, но входит НСУ, ЗИП, кейс, катапульта, зарядное устройство, аккумулятор
- 2 В стоимость не входит катапульта, камеры, дополнительное оборудование

11

Сценарии инвестиций

Минимальный сценарий

450 тыс. рублей

- Средства пойдут на апробацию новых конструкторских решений и постройку прототипа HEBЫ-2
- Будут задействованы производственные мощности МГТУ им. Баумана
- Доступ к композитным принтерам не круглосуточный, что сильно замедлит постройку дрона

Базовый сценарий

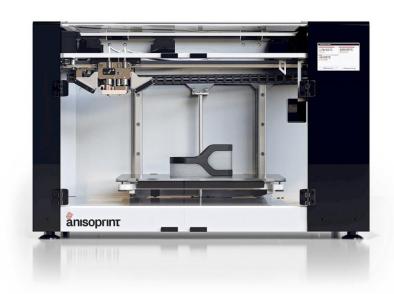
2,5 млн рублей

- Закупка 1 композитного и 1 обычного принтера
- Создание МИП
- Ограниченные возможности для удовлетворения спроса клиентов и для дальнейших исследований и развития

Оптимальный сценарий

12 млн рублей

- Закупка **5** композитных и **4** обычных принтеров
- Создание МИП
- Ускоренное развитие новых технологий и моделей БПЛА
- Достаточно ресурсов для удовлетворения потребностей клиентов и успешного выхода на рынок


1 рабочий БПЛА

2 БПЛА в месяц + МИП

10 БПЛА в месяц + МИП

Необходимое оборудование

Для создания МИП и запуска производства беспилотника HEBA-2 потребуется приобрести композитные и некомпозитные 3D-принтеры

Anisoprint Composer

Цена: 1796 196 рублей

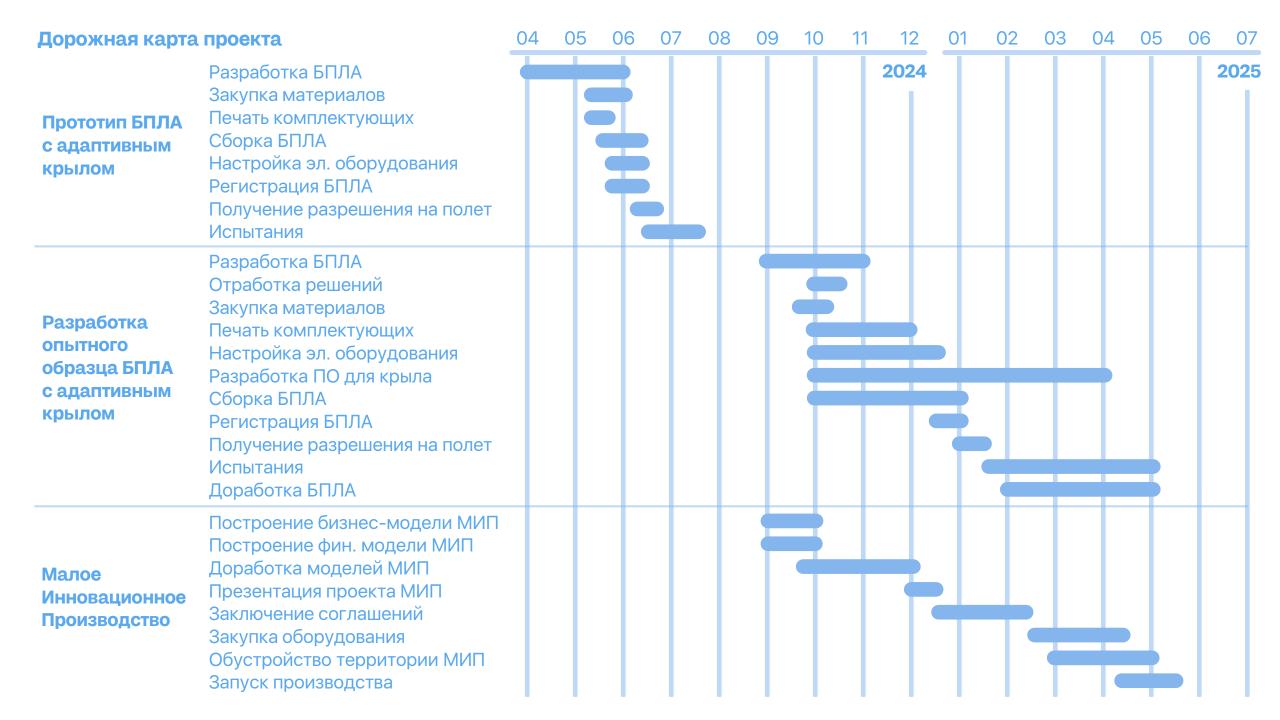
Рабочий стол: 420 x 297 x 210 мм

CreatBot F430

Цена: 380 000 рублей

Рабочий стол: 400 x 300 x 300 мм

18,7 млн ₽ NPV (24 месяца)


145 % IRR (24 месяца)

15 Месяцев Период окупаемости

12 млн ₽ Оптимальный САРЕХ

2, **9** млн ₽ FCFF (сентябрь 2026)

- При достаточном количестве инвестиций, проект окупится за 15 месяцев
- Показатели достигаются при условии производства и продажи 10 БПЛА в месяц
- При условии продажи единицы БПЛА за 600 тысяч рублей

Команда проекта

Михаил Новиков СЕО + СТО

m9216567644@yandex.ru 8 (921) 656-76-44

МГТУ им. Н. Э. Баумана Ракетно-космическое

композитные конструкции

- Основатель

 Bauman Case Club
- Победитель 6-ти кейс-чемпионатов

Валерий Козлов свро + сро

vkozlov2003@yandex.ru 8 (904) 299-94-44

РЭУ им. Г. В. Плеханова

Корпоративные финансы на английском языке

- Ex. BAI Magnit OMNI
- Ex. BAI Strategy Partners
- Ex. CDO глянцевого журнала

Илья Киселев Технический аналитик

iliaskisel@mail.ru 8 (915) 556-07-02

МГТУ им. Н. Э. Баумана Управление в технических системах

• Оператор НСУ БПЛА

Вячеслав Гончар Разработчик ПО

slava012003@yandex.ru 8 (985) 406-09-24

МГТУ им. Н. Э. Баумана Управление в технических системах

- Участник МАКС
- Победитель и призер хакатонов и олимпиад по робототехнике